"Empirical Studies for Improving the Contrast of Transparent Objects in Light Microscopy"

Definitions

Hobby: "an activity done regularly in one's leisure time for pleasure" (Oxford US English Dictionary)

Quotes:

"Hobbies of any kind are boring except to people who have the same hobby."

David Barry

"When a habit begins to cost money, it's called a hobby."

Jewish Proverb quotes

"How much did that ***** thing cost? Can't you find a cheaper hobby, like fixing the faucet?"

My very practical wife

The Microscope

http://zeiss-campus.magnet.fsu.edu/articles/basics/opticaltrain.html

Resolution:

The resolution of an optical microscope is defined as the shortest distance between two points on a specimen that can still be distinguished by the observer or camera system as separate entities."

(Nikon MicroscopyU www.microscopyu.com)

Resolution and Diffraction Limited Systems

Optical resolution in a diffraction limited system can be described using the following:

 $r = \frac{\lambda}{(2NA)}$

Where: λ = illumination wavelength NA is the numerical aperture of the system (condenser and objective)

Resolution and Diffraction Limited

1 http://www.microscopyu.com/articles/formulas/formulasna.html

2 http://zeiss-campus.magnet.fsu.edu/articles/basics/opticaltrain.html

What does this mean???

Theoretical vs. Practical
 Theoretical limit of ~200 nm
 Practical limit ~250 nm

Contrast is defined as the difference in light intensity between the image and the adjacent background relative to the overall background intensity."

(Nikon MicroscopyU www.microscopyu.com)

Contrast Methods

Imaging Technique

Transparent Specimens Phase Objects Bacteria, Spermatozoa, Cells in Glass Containers, Protozoa, Mites, Fibers, etc.	Phase Contrast Differential Interference Contrast (DIC) Hoffman Modulation Contrast Oblique Illumination (Razor Edge)
Light Scattering Objects Diatoms, Fibers, Hairs, Fresh Water Microorganisms, Radiolarians, etc.	Rheinberg Illumination Darkfield Illumination Phase Contrast and DIC
Light Refracting Specimens Colloidal Suspensions powders and minerals Liquids	Phase Contrast Dispersion Staining DIC
Amplitude Specimens Stained Tissue Naturally Colored Specimens Hair and Fibers Insects and Marine Algae	Brightfield Illumination
Birefringent Specimens Mineral Thin Sections Liquid Crystals Melted and Recrystallized Chemicals Hairs and Fibers Bones and Feathers	Polarized Illumination

Specimen Type

Contrast Methods

http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artapr09/rvw-contrast.html

The Price of Contrast

Technique	DIY	Cost Range (for used equipment)
Brightfield Illumination	No	Usually the cost of entry \$100 - \$3000.00
Oblique Illumination	Yes	\$0.25 - \$200.00
Annular Illumination (COL)	Yes	\$0.25 - \$2000.00
Rheinberg Illumination	Yes	\$5.00- \$50.00
Darkfield Illumination	Yes/ No	\$0.25 - \$300.00
Polarized Illumination	Yes/ No	\$15.00 - UP
Phase Contrast	No	\$300.00 - \$700.00
Differential Interference Contrast (DIC)	No	\$1200.00 - \$3000.00
Hoffman Modulation Contrast	No	\$1000.00 - \$3000.00

What does this mean???

Resolution vs. Contrast

- Both are needed for best observation
- Contrast can adversely impact resolution
- The best method does not always cost the most

My Foray into Annular or Circular Oblique Illumination (COL) Variants

The low cost DIC

Annular or COL

OBLIQUE PRINCIPLE

- Block the light from one side
- Increases higher order diffracted light illuminating specimen
- Produces 3D like shading
 COL PRINCIPLE
 - Block the intense central light cone
 - Increases higher order diffracted light illuminating specimen

http://www.microscopy-uk.org.uk/mag/indexmag.html?http://www.microscopy-uk.org.uk/mag/artdec02/pjcol.html

Combining COL and Oblique

Modern Microscopy "How To" articles

- The first article combined several techniques into one method (<u>http://www.modernmicroscopy.com/main.asp?article=100</u>)
 - COL
 - Oblique
 - Polarized light
- The second article (<u>http://www.modernmicroscopy.com/main.asp?article=106</u>)
 - Simplified the components
 - Added more varied light

Article I

Image Comparison Article I

Stauroneis

Image Comparison Article I

Stauroneis

Article II

Article II Actual Setup

Eight-form and ten-form diatom test slides were selected as the test subject. Striae spacing for test diatoms are given in the table below:

Table 1. Diatoms imaged with critical parameters.

Diatom	Length (mm)	Striae Spacing
Amphiplura pellucida	80	0.27 ³ , 0.21 (0.22-0.25) ⁴
Amphipleura lindheimeri	100	0.36 ⁵
Surirella gemma	60-100	0.33 (0.40-0.50) ⁴
Nitzschia sigma	150	0.435 ³
Stauroneis phoenocenteron	170	0.714 ³

Images Stauroneis

Images Amphiplura

Images Surirella

Images Amphiplura Pellucida

Image Comparison Article II

Stauroneis

Image Comparison Article II

Amphiplura

Desmids

The Future???

Conclusions

- All prototypes improved contrast over brightfield
- Prototypes with the central round stop gave the best resolution enhancement
- Some prototypes offer image quality and an overall appearance similar to those obtained via DIC at a cost of around \$20.00 (USD)

"Legendary innovators like Franklin, Snow, and Darwin all possess some common intellectual qualities — a certain quickness of mind, unbounded curiosity — but they also share one other defining attribute. They have a lot of hobbies."

Steven Johnson, Where Good Ideas Come From: The Natural History of Innovation